Understanding Malware’s Network Behaviors using Fantasm

Xiyue Deng
xiyueden@isi.edu
Information Sciences Institute

Hao Shi
shihao@isi.edu
Information Sciences Institute

Jelena Mirkovic
mirkovic @isi.edu
Information Sciences Institute

Abstract

Background: There is very little data about how often
contemporary malware communicates with the Internet
and how essential this communication is for malware’s
functionality.

Aim: We aim to quantify what fraction of contempo-
rary malware samples are environment-sensitive and will
exhibit very few behaviors when analyzed under full con-
tainment. We then seek to understand the purpose of the
malware’s use of communication channel and if malware
communication patterns could be used to understand its
purpose.

Method. We analyze malware communication be-
havior by running contemporary malware samples on
bare-metal machines in the DeterLab testbed, either in
full containment or with some limited connectivity, and
recording and analyzing all their network traffic. We
carefully choose which communication to allow, and we
monitor all connections that are let into the Internet. This
way we can guarantee safety to Internet hosts, while ex-
posing interesting malware behaviors that do not show
under full containment.

Results. We find that 58% of samples exhibit some
network activity within the first five minutes of run-
ning. We further find that 78% of these samples exhibit
more network behaviors when ran under our limited con-
tainment, than when ran under full containment, which
means that 78% of samples are environment-sensitive.
Most common communication patterns involve DNS,
ICMP ECHO and HTTP traffic toward mostly non-
public destinations. Likely purpose of this traffic is bot-
net command and control. We further show that mal-
ware’s network behaviors can be used to determine its
purpose with 85-89% accuracy.

Conclusions. Ability to communicate with outside
hosts seems to be essential to contemporary malware.
This calls for better design of malware analysis environ-
ments, which enable safe and controlled communication
to expose more interesting malware behaviors.

1 Introduction

Malware today evolves at an amazing pace. Kaspersky
lab [1] reports that more than 300,000 new malware sam-
ples are found each day. While many have analyzed
malware binaries to understand its purpose [7, 9], little
has been done on analyzing and understanding malware
communication patterns [17,22]. Specifically, we do not
know how much malware needs outside connectivity and
what impact limited connectivity has on malware’s func-
tionality. We further do not understand which application
and transport protocols are used by contemporary mal-
ware, and what is the purpose of this communication.
Understanding these issues is necessary for two reasons.
First, much malware analysis occurs in full containment
due to legal and ethical reasons. If communication is
essential to malware, then analyzing it in full contain-
ment makes what defenders observe very different from
how malware behaves in the wild. Second, understand-
ing malware communication patterns may be useful to
understand its functionality, even when malware code is
obfuscated or encrypted.

We hypothesize that communication may be essen-
tial to malware for multiple reasons. First, contem-
porary malware is becoming environment-sensitive and
may test its environment before it reveals its functional-
ity [7, 14]. If constrained environment is detected, mal-
ware may modify or abort its behavior. Second, much
of malware functionality today relies on a functional net-
work [13,24]. Malware often downloads binaries needed
for its functionality from the Internet, or connects into
command and control channel to receive instructions on
its next activity [25]. Without network access such mal-
ware is an empty shell, containing no useful code. Third,
malware functionality itself may require network access.
Advanced persistent threats [15] and keyloggers collect
sensitive information on users’ computers, but need net-
work access to transfer it to the attacker. DDoS attack
tools, scanners, spam and phishing malware require net-

work access to send malicious traffic to their targets.
Without connectivity, such malware will become dor-
mant.

We test our hypothesis by analyzing 2,994 contempo-
rary malware samples, chosen to represent a wide variety
of functional behaviors (e.g., key loggers, ransomware,
bots, etc.). We analyze each sample under full and un-
der partial containment, for five minutes, and record all
network traffic. Our partial containment is designed to
carefully allow select malware communication attempts
into the Internet, when we believe this is necessary to re-
veal more interesting behaviors. All traffic is monitored
for signs of malicious intent (e.g., DDoS or scanning)
and quickly aborted if these are detected. This way we
can guarantee safety to the Internet from our experimen-
tation.

We find that 58% of samples exhibit some network be-
havior, and that 78% of these samples exhibit more net-
work behaviors when ran under our partial containment,
than when ran under full containment, which means they
are environment-sensitive. Most malware samples send
DNS, ICMP ECHO and HTTP traffic, and contact ob-
scure destinations rather than popular servers. Likely
purpose of these malware communication attempts is
command and control communication, and new binary
download. We further show that malware’s network be-
haviors can be used to determine its purpose with 85—
89% accuracy. We also show that our partial containment
is safe for the Internet. In twelve weeks of running, we
have received no abuse complaints and our IP addresses
have not been blacklisted.

All the code developed in our work and the materials
used in our evaluation are available at our project web-
site: https://steel.isi.edu/Projects/fantasm/

2 Related Work

In this section, we summarize related work on under-
standing malware behaviors.

Most malware analysis works focus on analyzing sys-
tem traces and malware binaries [20,21]. There are
fewer efforts on analyzing the semantics of malware’s
network behavior. The Sandnet article [22] provides a
detailed, statistical analysis of malware’s network traffic.
The authors give an overview of the popularity of each
protocol that malware employs. However, they do not
attempt to understand the high-level semantics of mal-
ware’s network conversations, and this is the contribu-
tion we make. Our work also updates results from [22]
with communication patterns of contemporary malware.
For example, we observe that ICMP ECHO has be-
come the second most popular protocol used by mal-
ware. Morales et al. [17] define seven network activities
based on heuristics and analyze malware for prevalence

of these behaviors. Yet this work does not provide insight
into a malware sample’s purpose (e.g., worm, scanner,
etc.) and it may miss behaviors other than those seven
select ones. Our work complements this work and cov-
ers a richer set of behaviors, composed out of some basic
communication patterns discussed in Section 5.3.

3 Fantasm

In this section, we describe the goals for our Fantasm
system, our partial containment rules and how we ensure
safety to the Internet from our experimentation.

3.1 Goals

Our goal in designing the Fantasm system was to sup-
port safe and productive malware experimentation. Safe
means that we wanted to ensure that we do no harm to
other Internet hosts with our experiments. Productive
means that we wanted to ensure that as many as possi-
ble outgoing communication requests, launched by mal-
ware, receive a reply to that malware may move on to its
next activity.

3.2 Partial Containment

One could achieve safety in full containment, without
letting any traffic out of the environment. But because
malware is environment-sensitive this would not lead to
productive experimentation. One could also experiment
in an open environment, where all the traffic is let out.
But this would not be safe since the analysis environment
could become a source of harmful scans, DDoS attacks
and worm infections, which harm other Internet hosts.
Due to ethical consideration, no organization would sup-
port such analysis for long.

To meet our goals we decided to experiment with mal-
ware in partial containment, where we selectively de-
cide which malware flows to allow to reach into the In-
ternet based on our assessment of their potential risk to
the Internet, which is conformant to the ethical princi-
ples for information and communication technology re-
search [11]. We also attempt to handle each outgoing
flow in full containment first, by impersonating remote
servers and crafting generic replies. This further reduces
the amount of traffic we must let out and improves ex-
perimentation safety. We now explain how we assessed
this risk and how we enforced the containment rules.

Based on a malware flow’s purpose we distinguish be-
tween the following flow categories: benign (e.g., well-
formed requests to public servers at a low rate), e-mail
(spam or phishing), scan, denial of service, exploit and
C&C (command and control). Potential harm to Inter-
net hosts depends on the flow’s category. Spam, scans

Flow

Impersonator

Figure 1: Flow handling: how we decide if an outgoing
flow will be let out, redirected to our impersonators or
dropped.

and denial of service are harmful only in large quantities
— letting a few such packets out will usually not cause
severe damages to their targets, but it may generate com-
plaints from their administrators. On the other hand, bi-
nary and text-based exploits are destructive, even in a
single flow. The C&C and benign communications are
not harmful and usually must be let out to achieve pro-
ductive malware experimentation.

The challenge of handling the outside communication
with a fixed set of rules lies in the fact that the flow’s
purpose is usually not known a priori. For example a
SYN packet to port 80 could be the start of a benign
flow (e.g., a Web page download to check connectiv-
ity), a C&C flow (to report infection and receive com-
mands for future activities), an exploit against a vulner-
able Web server, a scan or a part of denial-of-service at-
tack. We thus have to make a decision how to handle
a flow based on incomplete information, and revise this
decision when more information is available. Our initial
decision depends on how essential we believe the flow
is to the malware’s continued operation, how easy it is
for us to fabricate responses without letting the flow out
of our analysis environment, and how risky it may be
to let the flow out into the Internet. For essential flows
whose replies are predictable, we develop generic ser-
vices that provide these predictable responses and do not
allow these flows into the Internet. We call these ser-
vices “impersonators”. Essential flows whose replies are
not predictable, and which are not risky, are let out into
the Internet, and closely observed lest they exhibit risky
behavior in the future. Non-essential flows and essential
but risky flows are dropped. Figure 1 illustrates our flow
handling.

Traffic that we let out could be misused for scanning or
DDoS if we let it out in any quantity. We actively monitor
for these activities and enforce limits on the number of
suspicious flows that a sample can initiate. We define a
suspicious flow as a flow, which receives no replies from
the Internet. For example, a TCP SYN to port 80 that

does not receive a TCP SYN-ACK would be a part of
a suspicious flow. Similarly a DNS query that receives
no reply is a suspicious flow. Suspicious flows will be
present if a sample participates in DDoS attacks or if it
scans Internet hosts. If the sample exceeds its allowance
of suspicious flows, we abort this sample’s analysis.

We summarize our initial decisions and revision rules
in Table 1. We consider DNS, HTTP and HTTPS flows
as essential and non-risky, whose replies we cannot fake.
We make this determination because many benign and
C&C flows use these services to obtain additional mal-
ware executables, report data to the bot master and re-
ceive commands. Among our samples, DNS is used by
62%, HTTP by 35%, and HTTPS by 10% of samples
(Section 4).

We consider FTP, SMTP and ICMP flows as essen-
tial flows with predictable replies. We forward these to
our corresponding impersonators (Figure 1). These are
machines in our analysis environment that run the given
service, and are configured to provide generic replies to
service requests. We redirect ICMP ECHO requests to
our service impersonators and fake positive replies. We
drop other ICMP traffic.

Our FTP service impersonator is a customized, per-
missive FTP service that positively authenticates when
any user name and password are supplied. This setting
can handle all potential connection requests from mal-
ware. If malware tries to download a file, we will create
one with the same extension name, such as .exe, .doc,
. jpg, and others. We save uploaded files for further anal-
ysis. For SMTP service, we set up an Email server that
can reply with a “250 OK” message to any request. Our
ICMP impersonator sends positive replies to any ICMP
ECHO request.

4 Experimentation Goals Environment

and Design

In this section, we discuss our experimentation goals, en-
vironment and experiment design.

4.1 Experimentation Goals

We wanted to observe and analyze communication pat-
terns of malware. This necessitated identification of a
relatively recent, representative set of malware binaries
and running them in partial containment, while record-
ing their communication. We further needed a way to
quickly and automatically restore “clean state” of ma-
chines between malware samples

Goal Action | Targeted Services
Forward | DNS, HTTP, HTTPS
Elicit malware behavior | Redirect | FTP, SMTP, ICMP ECHO
Restrict forwarded flows Drop Other services —
Limit | Number of suspicious flows

Table 1: Flow policies for partial containment

4.2 Experimentation Environment

We experiment with malware samples in the DeterLab
testbed [8]. DeterLab [8] enables remote remote exper-
imentation and automated setup. An experimenter gains
exclusive access and sudoer privileges to a set of physical
machines and may connect them into custom topologies.
The machines run an operating system and applications
of a user’s choice. Experimental traffic is usually fully
contained, and does not affect other experiments on the
testbed, nor can it get out into the Internet. In our ex-
periments, we leverage a special functionality in the De-
terLab testbed, called “risky experiment management”,
which allows exchange of some user-specified traffic be-
tween an experiment and the Internet. We specify that all
DNS, HTTP and HTTPS traffic should be let out.

We run malware samples on several machines in a De-
terLab experiment, which we will call Inmates. We hi-
jack default route on Inmates and make all their traffic
to the Internet pass through a special machine in our ex-
periment, called Gateway. This Gateway implements our
partial containment rules. We implement all of the ser-
vice impersonators on a single physical machine. Each
machine has a 3GHz Intel processor, 2GB of RAM, one
36Gb disk, and 5 Gigabit network interface cards.

To hide the fact that our machines reside within De-
terLab from environment-sensitive malware we modify
the system strings shown in Table 2. For example, we
replace the default value (“Netbed User”) of “Registered
User” with a random name, e.g., — “Jack Linch”. There-
fore, malware will not detect the existence of DeterLab
by searching for such strings.

4.3 Experiment Design

‘We run each malware sample under a given containment
strategy (full or partial) for five minutes and record all
network traffic at the Gateway. After analyzing each mal-
ware sample, we must restore Inmates to a clean state.
We take advantage of the OS setup functionality pro-
vided by DeterLab to implement this function. We first
perform certain OS optimization to reduce the size of OS
image and thus shorten the time needed to load the image
when restoring clean state. This modified OS is saved
into a snapshot using the disk imaging function of Deter-
Lab. This step takes a few minutes but is carried out only

once for our experimentation. Later, whenever we need
to restore the system after analyzing a malware sample,
we reload the OS image using DeterLab’s os_load com-
mand.

Our environment could also be used to study behavior
of benign code, but this is outside of the scope of this
research.

4.4 Malware Dataset

We obtained a recent set of malware samples by down-
loading 29,319 malware samples between March 4th and
March 17th, 2017 from OpenMalware [2]. In order to ob-
tain a balanced dataset we establish ground truth about
the purposes of these samples by submitting their mdS
hashes to VirusTotal [5]. We retrieve 28,495 valid re-
ports. Each report contains the analysis results of about
50~60 anti-virus (AV) products for a given sample. We
keep the samples that were labeled as malicious by more
than 50% AV products. This leaves us with 19,007 sam-
ples.

Concise Tagging. Each AV product tags a bi-
nary with vendor-specific label, for example,
“worm.win32.allaple.e.”, “trojan.waski.a”, “mali-
cious_confidence_100% (d)”, or just “benign”. As
demonstrated in [6], AV vendors disagree not only on
which tag to assign to a binary, but also how many
unique tags exist. To overcome this limitation, we devise
a translation service that translates vendor-specific tags
into a nine concise, generic tags, such as: worm, trojan,
virus, etc. We learn the translation rules by first taking
a union of all the tags assigned by the AV products
(74,443 in total), and then manually extracting common
keywords out of them that signify a given concise
category. Finally, we tag the sample with the concise
category that is assigned by the majority of the AV
products. Table 3 shows the breakdown of our samples
over our concise tags.

We then randomly select 2,994 out of the 19,007 sam-
ples, trying to select equal number of samples from each
category, to achieve diversity and form a representative
malware set. We continue working with this malware
set.

Key Name Default in DeterLab Our Modification
Registered User “Netbed User” Random name, e.g., “Jack Linch”
Computer Name | “pc.isi.deterlab.net” Random name, e.g., “Jack’s PC”

Workgroup “EMULAB” “WORKGROUP”

Table 2: Minimizing artifacts of DeterLab.

Table 3: Concise Tagging of Malware Samples

Categories | Samples || Categories | Samples
Virus 6,126/32% Riskware 409/2%
Trojan 6,040/32% Backdoor 197/1%
Worm 4,227/22% Bot 45/<1%
Downloader 984/5% Ransomware | 17/<1%
Adware 962/5% Total 19,007
5 Results

In our evaluation, out of 2,994 malware samples in our
malware set 1,737 samples exhibited some network ac-
tivity during a run. The remaining samples may be dor-
mant, waiting for some trigger or may simply exhibit too
small communication frequency, which we cannot ob-
serve given our experiment duration (5 minutes).

5.1 Partial Containment Exposes More
Malware Behavior

We measure the quantity of observable malware behavior
by counting the number of network flows recorded dur-
ing experimentation. Out of 1,737 samples that exhibit
any network behavior, 1,354 (78%) generate more flows
under partial containment than under full containment.
This supports our hypothesis that network connectivity
is essential for malware functionality, and that most mal-
ware samples are environment-sensitive. Out of 1,737
that exhibit network behavior there were 9,304,083 out-
going flows generated during our 5 minute experimen-
tation interval. Out of these 9,304,083 flows, our im-
personators could fake replies to 9,270,831 (99.64%) of
them. We had to let 2,295 flows (0.02%) out into the in-
ternet because we could not fake their replies and they
were deemed essential. Finally 30,957 flows (0.33%)
were dropped because we did not have an impersonator
for their protocol, but they were deemed too risky to be
let out. We hope to develop more impersonators in the
future, and thus further reduce risk to the Internet.

As a proof of how safe our experimentation was, dur-
ing twelve weeks that we ran, we received no abuse com-
plaints. We also analyzed 203 IP blacklists from 56 well-
known maintainers (e.g., [3]), which contain 178 million
IPs and 34,618 /16 prefixes for our experimentation pe-
riod. Our external IP was not in any of the blacklists,

Protocols | Samples [| Protocols | Samples
DNS 1081/62% 1042 65/4%
ICMP echo | 818/47% 799 33/2%
HTTP 600/35% 6892 25/1%
65520 237/14% 11110 17/1%
HTTPS 173/10% 11180 17/1%
SMTP 75/4% FTP 12/1%

Table 4: Top 12 application protocols used by malware,
and the number and percentage of samples that use them.

which further supports our claim that no harmful traffic
was let out.

5.2 Malware Communication Patterns

Table 4 shows the top 12 application protocols used by
our malware dataset. DNS is used by 62% of samples
and its primary use seemed to resolve the IPs of the do-
mains that malware wishes to contact. ICMP was used
by 47% of samples, likely to test reachability, either to
detect if malware is running in a contained environment
or to identify live hosts that may later be infected, if vul-
nerable. HTTP (35% of samples) and HTTPS (10% of
samples) are likely used to retrieve new binaries, as we
find many of these connections going out to file-hosting
services. Port 65520 is mostly used by a virus that infects
executable files and opens a back door on the compro-
mised computers. The SMTP protocol is used to spread
spam.

Samples in our malware dataset queried a total of
5,548 different domains, among which zief.pl (14%)
and google.com (11%) are the most popular domains.
We query these domains from alexa.com' , which has
the records for 341 (6%) domains, as shown in Figure 2.
We find that only 1% of the domains have ranks lower
than 10,000, 5% have higher ranks and 94% of domains
are not recorded by alexa. For the domains whose
rank is lower than 10,000, most are web portals, such as
YouTube and many are file storage services, like Drop-
box. We manually check 20 domains that have no record
in alexa, and none had a valid DNS record. This sug-
gests that malware may use portal websites either test

!In our future work we will look to use a more robust representation
of popular domains, like proposed by Metcalf et al in [16]

7
]
7

150 200 250 300 350
Domains

0 50 100

Figure 2: Ranks of domains from alexa.com.

0.4
0.35

o
- O Qe
o v o w

o
o -
a

Percentage of Samples

o
o
o o

0 10 20 30 40 50 60 70
Top-level Domains

Figure 3: Popularity of top-level domains in our ob-
served malware communications.

network reachability or for file transfer, and it may use
private servers for file transfer or for C&C communica-
tion.

We classify the queried names based on their top-level
domain, e.g., .com or .net. We find a total of 72 dis-
tinct top-level domains, as shown in Figure 3. The Top
3 of these domains are shown in Table 5. The .com is
the most popular top-level domain, which is queried by
540 (31%) samples. The third column in Table 5 shows
the top 3 queried domains in each top-level category.
These domains contain 53 country codes, with Poland,
Germany, and Netherlands being the top three countries.
This means that malware in our dataset predominantly
targeted European victims.

5.3 Summarizing Malware Communica-
tion

We now explore how to summarize malware communi-
cation so we can further investigate common patterns in
how malware uses the Internet. Our goal was to create
a concise and human-readable digest of malware’s com-
munication starting from recorded tcpdump logs. We call
this representation NetDigest.

We start by splitting a malware’s traffic into flows

Top-level | Samples Second-level Samples
google.com 187/35%
.com 540/31% msrl.com 73/14%
ide.com 73/14%
zief.pl 244/83%
.pl 293/17% brenz.pl 26/9%
ircgalaxy.pl 22/8%
secureserver.net | 73/31%
.net 235/14% surf.net 68/29%
aol.net 65/28%

Table 5: Popularity of domains in malware DNS queries.

Protocol [[Attribute: Value]

[LocalPort: integer]} [NumPktSent: integer]?
All [NumPktRecv: integer]3t [PktSentTS:
float_list]} [PktRecvTS: float_list]} [Pay-
loadSize: integer_list]

[Server: IP_address]f[QueryType: string]t
[CNAME: string]} [ResponseType: IP_address
list]t

DNS

[Server: IP_address]¥[Proactive: boolean]
[GotResponse: boolean]}[Code: integer]f,
[Download: file_type]f [Upload: file_type]

HTTP/FTP

[Server: IP_address][EmailTitle: string]}
[Recipients: string]f[BodyLength: integer];
[ContainAttachment: boolean]; [AttachmentType:
string]*

SMTP

ICMP [RequestIP: IP_address][NumRequests, integer]*

¥ Occur exactly once
T May have zero or more occurrences
* Have at least one occurrence

Table 6: NetDigest of a session.

based on the communicating IP address and port number
pairs, and the transport protocol. We call each such flow
a “session”. Then, for each session, we extract the appli-
cation protocol employed and devise a list of {attribute:
value} pairs for this protocol, as shown in Table 6.

The first row of Table 6 shows the information that we
will extract for all types of application protocols. For
example, “LocalPort” denotes the local IP port used by
malware, which is an integer. This attribute appears only
once for a single session, and is derived from the defi-
nition of a session. The “NumPktSent” means the total
number of packets sent by malware in an individual ses-
sion. The “PktSentTS” is a list of Unix epoch time of all
the packets sent by malware. Finally, we also maintain a
list of each packet’s payload size.

The DNS protocol has one attribute “Server”, which
has the value of IP_address that the query is sent to.
For the domain queried by malware, the QueryType can
be address record (4), mail exchange record (MX), pointer
record (PTR), or others. For the response sent back by
DNS server, we first save its canonical name, if any, in

a CNAME field. Then, we extract the response type and
corresponding values and assign them to the Response-
Type field.

For an HTTP or FTP session, we first take note of the
server’s IP address in the ServerIP field. Then, we use
boolean values to denote if this session is initiated by
malware (“Proactive”) and if malware receives any re-
sponse from Internet host (“GotResponse”). If the out-
side server replies to malware, we classify the following
packets as “Download” or “Upload” based on the direc-
tion of the bulk volume of data. We also extract the file
type being transferred.

For an SMTP message, we extract the server IP ad-
dress, Email title, recipients, and body length. We also
use a boolean value to note whether the message has an
attachment and save the attachment’s file type in a string.

For the ICMP protocol, we extract the destination IP
address into the RequestIP field. We also save the num-
ber of requests in NumRequests field.

After we build the lists of attribute-value pairs for all
the sessions produced by a malware sample, we sort the
lists based on their first timestamps. The final, sorted list
of session abstractions is called the NetDigest.

One sample NetDigest is shown in Figure 4
for the sample tagged as Trojan by AV products.
At the beginning, this sample queries a domain
(ic-dc.deliverydlcenter.com) using the default
DNS server that is part of our impersonator set. Our
DNS server acts as a recursive resolver and obtains and
returns the actual mapping. Then, this sample down-
loads a picture and blob files from the first [P address
returned. However, for the remaining Internet hosts,
this sample just establishes connections with them but
does not download or upload any information. For ex-
ample, the second domain (www.1l-ads.com) suggests
that it is an advertising website, but no payload is
downloaded from this website (session starting at times-
tamp 1488068896.977464). In addition, some IPs
are unreachable at the time of our execution, such as
52.85.83.112.

5.4 Classifying Malware by Its Network
Behavior

We now explore if unknown malware could be classified
based on its communication patterns. Current malware
classification relies on binary analysis. Yet, this approach
has a few challenges. First, malware may use packing
or encryption to obfuscate its code, thus defeating bi-
nary analysis. Second, malware may be environment-
sensitive and may not exhibit interesting behavior and
code if ran in a virtual machine or debugger, which are
usually used for binary analysis. We thus explore mal-
ware classification based on its communication behav-

ior, reasoning that malware may obfuscate its code but
it must exhibit certain key behaviors to achieve its basic
functionality. For example, a scanner must scan its tar-
gets and cannot significantly change this behavior with-
out jeopardizing its functionality.

In our classification we divide our malware set into a
training and a testing set. We then apply machine learn-
ing to learn associations on the training set between some
features of malware communication, which we describe
next, and our concise labels denoting malware purpose.
Finally, we attempt to classify the malware in the testing
set and report our success rate.

Extracting Features. We start with 83 select features,
extracted out of the malware’s NetDigest, as shown in
Table 7.

We abstract malware’s network traffic into four broad
categories: Packet, Session, Protocol, and Content. For
the Packet category, we divide it into three subgroups:
Header, Payload, and Statistics. In the Header subgroup,
we count the number of distinct IPs that a sample’s pack-
ets have been sent to. In addition, we also look up the
geographical locations of the IPs from the GeoLite [4]
database, including the countries and continent they re-
side in. We chose these features because it is known that
certain classes of malware target Internet hosts in differ-
ent countries. In the Payload subgroup, we calculate the
total size of payload in bytes. Furthermore, we compute
the following statistics for both sent and received vol-
ume, the packet counts and the packet timing: minimum,
maximum, mean, and standard deviation.

For the Session category, we consider all packets that
are exchanged between malware and a single IP address.
For these packets, we divide them into different sessions
according to the local ports used by malware. For each
session, we determine if its direction is proactive or pas-
sive, depending on whether the malware initiates the ses-
sion or not. We say the Result of a session is successful if
malware initiates the session and receives any responses
from the host. We further calculate the number of TCP
SYN packets, which can be used to detect SYN flood
attacks. We also record the number of sessions per IP,
which can be useful to further establish communication
purpose. For example, in our evaluation, we find that
one sample launches one short session with the first IP
and then initiates multiple sessions with the second one
for download. This network behavior indicates that the
first IP serves as a master, directing the malware sample
to the second, which acts as a file server.

For the Protocol category, we extract features for dif-
ferent types of application protocols. For example, for
the DNS we summarize the number of distinct domains
queried by malware in their DNS query and response
packets. For HTTP, we count the number of pack-
ets carrying specific HTTP status codes, such as 200

1488068895.052901: DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com],
[CNAME: N/A], [A: 52.85.83.81, 52.85.83.112,
52.85.83.132, 52.85.83.4, 52.85.83.96, 52.85.83.56,
52.85.83.32, 52.85.83.37]
1488068895.154335: HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: True]
[Download: blob], [Download: .png], [Download: blob]
1488068895.948346: HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: True]
1488068896.767094: DNS - [Server: 10.1.1.3], [A: www.l-lads.com], [CNAME: nl35adserv.com],
[A: 212.124.124.178]
1488068896.977464: HTTP - [Server: 212.124.124.178], [Proactive: True], [GotResponse: True]
1488069110.044756: DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A]J,
[A: 52.85.83.56, 52.85.83.112, 52.85.83.96, 52.85.83.37,
52.85.83.81, 52.85.83.4, 52.85.83.132, 52.85.83.32]
1488069110.049507: DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A]J,
[A: 52.85.83.32, 52.85.83.37, 52.85.83.56, 52.85.83.112,
52.85.83.96, 52.85.83.132, 52.85.83.4, 52.85.83.81]
1488069110.338822: HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: False]
1488069110.342816: HTTP - [Server: 52.85.83.81], [Proactive: True], [GotResponse: False]
1488069131.273458: HTTP - [Server: 52.85.83.112], [Proactive: True], [GotResponse: False]
1488069131.277206: HTTP - [Server: 52.85.83.112], [Proactive: True], [GotResponse: False]
1488069152.304031: HTTP - [Server: 52.85.83.132], [Proactive: True], [GotResponse: False]
1488069152.308025: HTTP - [Server: 52.85.83.132], [Proactive: True], [GotResponse: False]
1488069173.334854: DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A]J,
[A: 52.85.83.32, 52.85.83.132, 52.85.83.96, 52.85.83.81,
52.85.83.4, 52.85.83.56, 52.85.83.112, 52.85.83.37]
1488069173.338605: DNS - [Server: 10.1.1.3], [A: ic-dc.deliverydlcenter.com], [CNAME: N/A]J,
[A:52.85.83.32, 52.85.83.132, 52.85.83.112, 52.85.83.56,
52.85.83.81, 52.85.83.4, 52.85.83.37, 52.85.83.96]
1488069173.381571: HTTP - [Server: 52.85.83.4], [Proactive: True], [GotResponse: False]
1488069173.383566: HTTP - [Server: 52.85.83.4], [Proactive: True], [GotResponse: False]

Figure 4: Example NetDigest (md5: 01556ddfa6feb24c018581084f4a499a8).

Categories \ Subgroups | Features (83 in total)

Header Distinct number of: IPs, countries, continent, and local ports
Pavioad Total size in bytes;
Packet Y Sent/received: total number, minimum, maximum, mean, and standard vari-
ance
.. Sent/received packets: total number, rate;
Statistics
Sent/received time interval: min, max, mean, and standard variance
Direction | Proactive (initiated by malware) or passive (initiated by Internet servers)
. Result Succeeded or failed
Session

Total number of SYNSs sent;

Statistics
Number of sessions per IP: minimum, maximum, mean, and standard variance

DNS Number of distinct domains queried by malware

Number of replies received per reply code: 200, 201, 204, 301, 302, 304, 307,
HTTP 400, 401, 403, 404, 405, 409, 500, 501, 503;
Protocol Method: GET, POST, HEAD

Total number of packets;

ICMP Number per IP: min, max, mean, and standard variance
Other Ports: total number of distinct ports, top three used
Files php, htm, exe, zip, gzip, ini, gif, jpg, png, js, swf, xls, xIsx, doc, docx, ppt,

Content pptx, blob

Host info | OS id, build number, system language, NICs

Registry Startup entries, hardware/software configuration, group policy

D3

Keyword Number of: “mailto”, “ads”, “install”, “download”, “email”

Table 7: Features extracted from a malware’s NetDigest for classification purpose.

Algorithms Rank 1 Rank 2 Rank 3
Decision Tree 242/89% | 257/94% | 259/95%
Support Vector 231/85% | 259/95% | 265/97%

Multi-layer Perception | 231/85% | 257/94% | 262/96%

Table 8: Classification results: Rank 1 — our label was
the top label assigned by AV products, Rank 2 — our top
label was in the top 2 labels assigned by AV products,
Rank 3 — our top label was among top 3 assigned by AV
products.

(OK). Some malware samples behave differently based
on the returned status code. For ICMP, we calculate
minimum, maximum, average and standard deviation of
packet counts. For non-standard IP ports, we maintain
a set of distinct port numbers and calculate the top three
ports targeted by each malware sample.

For the Content category, we investigate the payload
content carried in HTTP packets, because this is the
top application protocol used by malware in our exper-
iments. We then use regular expressions to extract files
from hyperlinks in HTTP content, and interpret their ex-
tensions. Sometimes the content is binary, and we tag it
as blob. We also attempt to identify, using regular expres-
sions, if payload contains host information and Windows
registries that are typically reported to bot masters. Fi-
nally, we collect the frequencies of select keywords that
are may indicate a malware purpose, such as “ads”.

Classification Results. We investigate three popular
classification methods in machine learning area — deci-
sion trees [10], support vector machines [12], and multi-
layer perception [23]. We implement these algorithms
and standard data pre-processing (data scaling and fea-
ture selection) through a Python package Scikit [18].

We use 80% of this data set for training and the re-
maining 20% of samples for testing. The results are
shown in Table 8. Since malware today has very ver-
satile functionality, it may be possible that a sample ex-
hibits behavior that matches multiple labels. We denote
as “Rank 1” the case when our chosen label matches the
top one concise label chosen by the majority of AV prod-
ucts. When it matches one of top two labels, we denote
this as “Rank 2 and if it matches one of top three la-
bels, we denote it as “Rank 3”. Our Rank 1 success
rate ranged from 85 % (support vectors and multi-layer
perception) to 89% (decision trees), which is very good
performance. When we allow for a match between top
two labels (Rank 2), our success rate climbs to 94-95%.
And if we count match with any of the top three labels
as a success (Rank 3), our rate climbs to 95-97%. Based
on the typical performance of applying machine learning
techniques in malware analysis [19], we conclude that
our NetDigest representation can lead to very accurate

[]

[%]

808

[&]

@

- 06

§e]

304 F

2 02 - Decision Tree —o—

(‘)—“ : Support Vector —8—
0 Mu!ti-layer Pgrc. — ‘ ‘

0 5 10 15 20 25
Threshold for Number of Sessions

Figure 5: Classification precision as number of sessions
SrOws.

malware classification, based only on observed commu-
nication patterns.

We further investigated the root causes of our misclas-
sifications in Rank 1 that later became a success under
Rank 2 or Rank 3 criteria. Toward this goal, we manually
examined pcap traces of related samples. We find that all
these samples exhibit limited network behavior that was
not sufficient for classification. For example, one sample
queries a domain and then establishes a connection with
the HTTP server. However, no payload is downloaded or
uploaded, and thus this behavior may match any malware
category.

To investigate the relationship between classification
accuracy and the number of sessions observed in mal-
ware communication we perform several iterations of the
classification experiment. In each iteration filter out sam-
ples that launched fewer than N sessions. We then di-
vide the remaining samples into training and testing set
in 80%/20% ratio, train on the training set, perform the
classification on the testing set, and report the success
rate. We vary N from 1 to 25. The evaluation results
are shown in Figure 5. The x-axis of Figure 5 denotes
our limit on the number of sessions in a given run — N
and the y-axis shows the classification success rate for
each algorithm, corresponding to our Rank 1 criterion,
on the testing set. Figure 6 shows the number of samples
that generated N or fewer sessions in the training and the
testing set together. Overall, all three of the classifica-
tion methods performed well and were stable, except for
multi-layer perception when session quantity is between
5 to 8. After investigating these sessions, we found that
they do not have enough distinguishing feature values for
multi-layer perception algorithm. The small variance of
the input are further reduced by the intermediate calcu-
lation (hidden layers) of the algorithm [18]. The clas-
sification success rate increased slightly as the limit on
number of sessions increased, from 88% at 1 session to
93% at 25 sessions. Thus longer observations increase

i Samples —#— ; J

|
0 5 10 15 20 25
Threshold for Number of Sessions

Figure 6: Number of samples as the limit on number of
sessions grows.

classification accuracy but not by a lot.

6 Conclusions

In this work, we investigate how essential Internet con-
nectivity is for malware functionality. We find that 58%
of diverse malware samples initiate network connections
within the first five minutes and that 78% of these sam-
ples will become dormant in full containment. We fur-
ther provide breakdown of popular communication pat-
terns and some evidence as to the purpose of these com-
munications. Finally we show that malware communi-
cation behaviors ca be used for relatively accurate (85—
89%) inference of a sample’s purpose.

As future work, we will extend our framework to in-
clude analysis system-level activities for better under-
standing of a malware’s purpose, and will seek to im-
prove our generic impersonators to further reduce the
cases when traffic must be let outside of the analysis en-
vironment.

7 Acknowledgments

This material is based upon work supported by the
Department of Homeland Security under Contract No.
HSHQDC-16-C-00024. Any opinions, findings, and
conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily
reflect the views of the Department of Homeland Secu-
rity.

References

[1] Kaspersky Lab, 323,000 New Malware Samples Found Each Day.
http://wuw.darkreading.com/vulnerabilities---threats/
kaspersky-1lab-323000-new-malware-samples-found\
\-each-day/d/d-1id/1327655, 2016.

[2] ISC Tech Georgia, Open Malware. http://oc.gtisc.gatech.edu/,
2017.

(4]

(5]

(6]

(7]

[8

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Master Feeds, Bambenek Consulting Feeds.
bambenekconsulting.com/feeds/, 2017.

http://osint.

MaxMind, GeoLite Legacy Downloadable Databases.
maxmind.com/geoip/legacy/geolite/, 2017.

http://dev.

VirusTotal. https://www.virustotal.com/en/, 2017.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario. Automated classification and analysis of internet malware. In
RAID, volume 4637, pages 178—197. Springer, 2007.

D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and G. Vigna.
Efficient detection of split personalities in malware. In NDSS, 2010.

T. Benzel. The Science of Cyber-Security Experimentation: The DETER
Project. In Annual Computer Security Applications Conference (ACSAC),
2011.

P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and
S. Zanero. Identifying dormant functionality in malware programs. In JEEE
Symposium on Security and Privacy, pages 61-76, 2010.

G. De’ath and K. E. Fabricius. Classification and regression trees: a
powerful yet simple technique for ecological data analysis. Ecology,
81(11):3178-3192, 2000.

D. Dittrich and E. Kenneally. The menlo report: Ethical principles guiding
information and communication technology research. US Department of
Homeland Security, 2012.

1. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very large
ve-dimension classifiers. In Advances in neural information processing
systems, pages 147-155, 1993.

T. Holz, M. Engelberth, and F. Freiling. Learning more about the under-
ground economy: A case-study of keyloggers and dropzones. Computer
Security-ESORICS, pages 1-18, 2009.

M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. Detecting
environment-sensitive malware. In Recent Advances in Intrusion Detec-
tion, pages 338-357. Springer, 2011.

S.-T. Liu, Y.-M. Chen, and S.-J. Lin. A novel search engine to uncover
potential victims for apt investigations. In IFIP International Conference
on Network and Parallel Computing, pages 405-416, 2013.

L. B. Metcalf, D. Ruef, and J. M. Spring. Open-source measurement of
fast-flux networks while considering domain-name parking. In Proceedings
of the Learning from Authoritative Security Experiment Results Workshop,
2017.

J. A. Morales, A. Al-Bataineh, S. Xu, and R. Sandhu. Analyzing and ex-
ploiting network behaviors of malware. In International Conference on
Security and Privacy in Communication Systems, pages 20-34, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in python. Journal of Machine Learning Research,
12(Oct):2825-2830, 2011.

L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data
using clustering. In Proceedings of ACM CSS Workshop on Data Mining
Applied to Security, 2001.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov. Learning and clas-
sification of malware behavior. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 108—125,
2008.

K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of
malware behavior using machine learning. Journal of Computer Security,
19(4):639-668, 2011.

C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. Van Steen, F. C. Freil-
ing, and N. Pohlmann. Sandnet: Network traffic analysis of malicious soft-
ware. In Proceedings of the First Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security, pages 78-88. ACM, 2011.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[24]

[25]

B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The underground
economy of spam: A botmaster’s perspective of coordinating large-scale
spam campaigns. LEET, 11:4-4, 2011.

K. Thomas, D. Yuxing, H. David, W. Elie, B. C. Grier, T. J. Holt,
C. Kruegel, D. McCoy, S. Savage, and G. Vigna. Framing dependencies
introduced by underground commoditization. In Proceedings (online) of
the Workshop on Economics of Information Security, 2015.

